skip to main content


Search for: All records

Creators/Authors contains: "Stroupe, M. Elizabeth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Students often struggle with visualizing protein structures when working with two-dimensional textbook and lecture materials, so introducing them to 3D visualization software developed by and for structural biologists offers them a unique opportunity to work with authentic data while furthering their spatial reasoning skills and understanding of molecular structure and function. This article presents an active learning virtual laboratory in which students use authentic structural biology data to investigate the effects of both hypothetical and real-world SARS-CoV-2 mutations on the virus’s ability to bind to human ACE2 receptors and infect a host, causing COVID-19. Through this activity, introductory-level college students or advanced high school students gain a better understanding of applied biology, such as how vaccines and treatments are designed, as well as strengthening their understanding of core disciplinary concepts, such as the relationship between protein structure and function and the central dogma of molecular biology. While there were challenges during the pilot phase of activity development due to COVID-19 restrictions, students in the pilot groups came away from the activity with deeper understanding of the relationship between proteins and amino acid sequences and a new appreciation for the ways researchers design treatments for and study viruses. 
    more » « less
  2. Correia, John J. ; Rhoades, Elizabeth (Ed.)
    Precursor molecules for biomass incorporation must be imported into cells and made available to the molecular machines that build the cell. Sulfur-containing macromolecules require that sulfur be in its S2− oxidation state before assimilation into amino acids, cofactors, and vitamins that are essential to organisms throughout the biosphere. In α-proteobacteria, NADPH-dependent assimilatory sulfite reductase (SiR) performs the final six-electron reduction of sulfur. SiR is a dodecameric oxidoreductase composed of an octameric flavoprotein reductase (SiRFP) and four hemoprotein metalloenzyme oxidases (SiRHPs). SiR performs the electron transfer reduction reaction to produce sulfide from sulfite through coordinated domain movements and subunit interactions without release of partially reduced intermediates. Efforts to understand the electron transfer mechanism responsible for SiR’s efficiency are confounded by structural heterogeneity arising from intrinsically disordered regions throughout its complex, including the flexible linker joining SiRFP’s flavin-binding domains. As a result, high-resolution structures of SiR dodecamer and its subcomplexes are unknown, leaving a gap in the fundamental understanding of how SiR performs this uniquely large-volume electron transfer reaction. Here, we use deuterium labeling, in vitro reconstitution, analytical ultracentrifugation (AUC), small-angle neutron scattering (SANS), and neutron contrast variation (NCV) to observe the relative subunit positions within SiR’s higher-order assembly. AUC and SANS reveal SiR to be a flexible dodecamer and confirm the mismatched SiRFP and SiRHP subunit stoichiometry. NCV shows that the complex is asymmetric, with SiRHP on the periphery of the complex and the centers of mass between SiRFP and SiRHP components over 100 Å apart. SiRFP undergoes compaction upon assembly into SiR’s dodecamer and SiRHP adopts multiple positions in the complex. The resulting map of SiR’s higher-order structure supports a cis/trans mechanism for electron transfer between domains of reductase subunits as well as between tightly bound or transiently interacting reductase and oxidase subunits. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Siroheme is the central cofactor in a conserved class of sulfite and nitrite reductases that catalyze the six-electron reduction of sulfite to sulfide and nitrite to ammonia. InSalmonella entericaserovar Typhimurium, siroheme is produced by a trifunctional enzyme, siroheme synthase (CysG). A bifunctional active site that is distinct from its methyltransferase activity catalyzes the final two steps, NAD+-dependent dehydrogenation and iron chelation. How this active site performs such different chemistries is unknown. Here, we report the structures of CysG bound to precorrin-2, the initial substrate; sirohydrochlorin, the dehydrogenation product/chelation substrate; and a cobalt-sirohydrochlorin product. We identified binding poses for all three tetrapyrroles and tested the roles of specific amino acids in both activities to give insights into how a bifunctional active site catalyzes two different chemistries and acts as an iron-specific chelatase in the final step of siroheme synthesis.

     
    more » « less